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Abstract 

Environmental and occupational exposure to heavy metal-containing products, such as crude oil, poses serious 

global health concerns. The bioaccumulation of crude oil constituents in humans has been reported to be toxic to 
the brain, however, much is still unknown about the neurotoxic mechanism of crude oil. The thalamus is a key 

sensory neuro relay station to various cortical regions involved in numerous cognitive and sensorimotor functions.  

In the present study, we investigated thalamic glial and neuronal response to Bonny Light crude oil (BLCO) 

exposure in rats by immunohistochemical evaluations of selected neuro markers, including GFAP, Iba1, Nrf2, 

parvalbumin, and NeuN. Adult Wistar rats (n = 6) were orally administered either distilled water (control), 1 or 2 

ml/kg BLCO for 21 days. Following administration, we performed immunohistochemistry protocols for the 

markers mentioned above. BLCO induced a marked decrease in Iba1 expression levels with a contrasting increase 

in GFAP levels reflective of the involvement of glial activity. In contrast, BLCO exposure did not alter Nrf2 levels 

suggestive of the lack of influence on oxidative stress regulation by the Nrf2 pathway. Furthermore, there was 

overexpression of thalamic parvalbumin, which could indicate an aberrant increase in inhibitory activity by 

parvalbumin-expressing GABAergic interneurons, thus possibly disrupting the brain's excitatory-inhibitory 
balance. Additionally, there was a significant reduction in the number of NeuN-positive cells but no change in 

immunoreactivity levels, signifying a reduction in thalamic neuronal density in BLCO-exposed rats. Overall, our 

results suggest that BLCO exposure could alter glial and neuronal functions in the thalamic region of the brain. 

Keywords: Crude oil, thalamus, neurotoxicity, GFAP, Iba1, Nrf2, parvalbumin, NeuN. 

Introduction 

Crude oil and its derivatives are key sources of energy 

for humans; however, their constituents negatively 

impact the structure and function of the nervous 

system 1. Bonny light crude oil (BLCO) is a special 

blend of crude oil majorly produced in southern 

Nigeria. The massive production of BLCO coupled 

with poor infrastructure results in widespread BLCO 
pollution 2. Aside from accidental BLCO exposure, 

locals use BLCO for "medicinal purposes" such as 

topical application for burns, oral ingestion in the 

treatment of gastrointestinal diseases, and 

management of infertility 3.  However, given the 

individual constituents of BLCO, it is pragmatic to 

consider BLCO exposure as a great neurotoxic risk. 

BLCO contains several hydrocarbons and heavy 

metals such as vanadium, zinc, lead, iron, copper, and 

nickel, amongst others 4-6, all of which have been 

repeatedly reported to trigger neurotoxicity 7-10. 

The thalamus is made up of various nuclei, each of 

which serves a specific function in relaying sensory 

and motor signals. All sensory inputs, except 

olfaction, are relayed through the thalamic 

neurocircuits, which communicate with diverse 

cortical regions 11, 12. These intricate neural 

connections highlight the importance of the thalamus 

in cognitive processes such as learning and memory 
13, decision-making 14, consciousness 15 and motor 

executions 16 amongst others. Consequently, impaired 
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thalamic anatomy and associated function by 

neurotoxicants can potentially alter the proper 

execution of any of the behaviours mentioned above. 

The thalamus is organized into distinct nuclei, each 

with specific neural circuitry and function 12. These 
nuclei consist of cellular populations, including 

parvalbumin-expressing cells, which use gamma-

aminobutyric acid (GABA) as a transmitter and 

provide major inhibition for the thalamocortical 

neurons. Excitatory-inhibitory imbalance as a result of 

dyshomeostasis of parvalbumin levels has been linked 

to neurotoxicity and neurological disorders 17. 

Similarly, glia-mediated inflammation involving 

astrocytes and microglia is a known neurotoxic 

response to toxicants such as heavy metals and viral 

infections, amongst others 18. Biological markers, 

GFAP and Iba1, are used to demonstrate glial cell 
activation in neurotoxicological studies 19. On the 

other hand, the Nrf2 protein regulates the expression 

of different genes whose products are involved in 

antioxidant responses and the detoxification of toxic 

species produced during oxidative stress 20, 21. NeuN 

is a marker of mature neurons and has been used to 

directly evaluate neuronal loss 22, 23. All the 

aforementioned markers: GFAP, Iba1, Nrf2, 

parvalbumin and NeuN are utilized to evaluate the 

impact of certain neurotoxicants in the brain. 

Therefore, in this study, we performed 
immunohistochemistry demonstrations and 

quantification of GFAP, Iba1, Nrf2, parvalbumin and 

NeuN to assess the impacts of BLCO on the thalamus.  

2.0 Methods 

2.1 Animal models and treatments 

Twenty-four adult male albino strain Wistar rats (150-

200 g) were used for the study. All experimental 

protocols were based on the National Research 

Council Guide for the Care and Use of Laboratory 

Animals 24 and approved by the local Institutional 

Research Committee (FUTA/ETH/23/97). Animals 

were kept under a 12-hour light-dark cycle with free 
access to regular food and water. Rats (n = 6) were 

randomly assigned to receive oral administration of 

either distilled water (as controls), 1 ml/kg or 2 ml/kg 

of BLCO every 24 hours for 21 days. Doses were 

selected based on previous studes 6, 25. 

 BLCO was obtained from the Warri Refining and 

Petrochemical Company, Ekpan, Delta State, Nigeria. 

Gas chromatography–mass spectrometry (GC–MS) 

on Agilent 7890A/5975C revealed the presence of 

harmful substances, including several hydrocarbons, 

benzenedicarboxylic acids, naphthalenes, and 

carbonic acids. 

At day 22, rats were euthanized via isoflurane 

inhalation; brains were rapidly excised and fixed in 

10% neutral buffered formalin for subsequent 

immunohistochemical evaluations. 

2.2 Immunohistochemistry 

Fixed brains were embedded in paraffin wax, and 5 

µm thin mid-coronal sections were cut on a 

microtome. To expose the thalamic regions, mid-

coronal sections were obtained from Bregma -3.00 to 

3.60 mm 26. Sections were deparaffinised before being 

heated in a steamer for approximately 30 minutes in a 

citrate-based antigen unmasking solution, pH 6.0 

(Vector®, Burlingame, CA, USA; #H3300) and 

cooled on the bench at room temperature for thirty 

minutes. The sections underwent endogenous 
peroxidase block for ten minutes in 0.3% hydrogen 

peroxide dissolved in phosphate-buffered saline (pH 

7.4, Fisher BioreagentsTM #173844). Sections were 

then incubated in primary antibodies at room 

temperature for two hours and thirty minutes in 

primary antibodies diluted in UltraCruz® Blocking 

Reagent (Santa Cruz, USA; #SC-516214). The 

antibodies include GFAP (ThermoFisher, USA; 

#16825-1-AP) at 1:7500, IBA1 (Cell Signaling, USA; 

#17198) at 1:1250, Nrf2 (ThermoFisher, USA; #PA1-

38312) at 1:100, Parvalbumin (Novus Biologicals, 
USA; NB120-11427) at 1:1000, NeuN 

(ThermoFisher, USA; #26975-1-AP) at 1:1500. After 

washing in phosphate buffer saline twice for five 

minutes, sections were incubated in ImmPRESS™ 

(Peroxidase) Polymer Anti-Rabbit IgG Reagent, made 

in horse (Vector® #MP-7401). DAB Peroxidase 

(HRP) Substrate Kit (Vector® #SK-4100) was used to 

develop the brown colour, and sections were counter-

stained in haematoxylin 27, 28. 

2.3 Digital Image Analysis 

Immunostained slides were digitized with the 

Pannoramic 250 Flash II slide scanner (3D Histech, 

Budapest, Hungary). The accompanying digital 

microscopy application, CaseViewer software, was 

used to capture random non-overlapping 7-12 

photomicrographic fields of the thalamic areas at x40 

magnification. Non-overlapping images were selected 

by avoiding the repetition of the same thalamic areas 

in multiple photomicrographs. Digital images were 
imported into the NIH-sponsored ImageJ software for 

analysis using the ImmunoRatio plugin and the cell 

counter tool. The ImmunoRatio plugin gives a ratio of 

brown DAB (positive immunoreactivity) and the 

haematoxylin counterstain. The cell counter tool 

keeps track of the number of manually selected cell 

types 27, 29. Average scores of photomicrographs 

analysed were used for data analysis. 
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2.4 Statistics 

Data were analysed using One-way ANOVA followed 

by Tukey's multiple comparison tests with GraphPad 

Prism Version 8 (GraphPad Inc, San Diego, US) 

statistical software. Statistical significance was set to 

P < 0.05. 

 

 

 

 

 

 

3.0 Results 

3.1 BLCO increased the number of GFAP-positive 

cells and GFAP immunoreactivity levels in the 

thalamus. 

Immunohistochemical analysis with one-way 

ANOVA demonstrated significant changes in the 

number of GFAP-positive cells [F (2, 9) = 6.800, p = 

0.0159] and the immunoreactivity of GFAP protein [F 

(2, 9) = 9.891, p = 0.0053] in the thalamus following 

BLCO exposure in rats. Post-hoc analysis with the 

Tukey's test showed that there was a significant 

increase (p < 0.05) in the number of GFAP-expressing 

cells in the thalamus of rats exposed to 1 ml/kg of 
BLCO but not 2 ml/kg of BLCO (Figure 1b). 

Similarly, GFAP immunoreactivity was significantly 

increased (p < 0.01) in the 1 ml/kg group compared to 

the control and the 2 ml/kg group. Also, no significant 

difference is observed between the control and 2 

ml/kg group (Figure 1c). 

   

 

Figure 1: Immunohistochemical demonstration of GFAP in the thalamus of rats exposed to either 1 or 2 

  ml/kg of BLCO (A). Bar graphs depict the number of cells positive for GFAP (B) and their 

  levels of immunoreactivity (C) in experimental rats. Each column represents mean ± S.E.M. 
  Data were analysed using one-way ANOVA followed by Tukey's post-test. *p < .05, **p < .01. 
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3.2 Reduction in the number of Iba1-positive cells in 

the thalamus following BLCO exposure.  

Immunohistochemical analysis with one-way 

ANOVA showed significant changes in the number of 

Iba1-positive cells in the thalamus [F (2, 9) = 4.272, p 

= 0.0496] of rats exposed to BLCO. Conversely, the 

immunoreactivity of thalamic Iba1 protein showed no 

significant change [F (2, 9) = 2.198, p = 0.1670] 

following BLCO exposure in rats. Post-hoc analysis 

with the Tukey's test showed a significant reduction (p 

< 0.05) of Iba1 positive cells only in the thalamus of 

rats exposed to 2 ml/kg of BLCO compared to control 
(0 ml/kg) (Figure 2b). The immunoreactivity level of 

Iba1 protein showed no significant difference in the 

thalamus of rats exposed to either 1 or 2 ml/kg of 

BLCO compared to the control (Figure 2c).  

 

 

Figure 2: Immunohistochemical demonstration of Iba1 in the thalamus of rats exposed to either 1 or 2 

  ml/kg of BLCO (A). Bar graphs depict the number of cells positive for Iba1 (B) and their levels 

  of immunoreactivity (C) in experimental rats. Each column represents mean ± S.E.M. Data were 

  analysed using one-way ANOVA followed by Tukey's post-test. *p < .05. 

 

3.3 Elevated parvalbumin levels and increased 

number of parvalbumin-positive cells following 

BLCO exposure.  

Immunohistochemical analysis with one-way 

ANOVA demonstrated significant changes in the 

number of parvalbumin-positive cells [F (2, 9) = 

15.00, p = 0.0014] and the immunoreactivity of 

parvalbumin protein [F (2, 9) = 13.93, p = 0.0018] in 

the thalamus following BLCO exposure in rats. Post-

hoc analysis with Tukey's test indicated that there 

were more parvalbumin-positive cells in the thalamus 

of rats exposed to either 1 ml/kg (p < 0.05) or 2 ml/kg 

(p < 0.01) of BLCO than in control rats (Figure 3a). 
Likewise, parvalbumin immunoreactivity was 

increased in both 1 ml/kg (insignificant; p > 0.05) and 

2 ml/kg (significant; p < 0.01) of BLCO compared to 

the control. In addition, parvalbumin 

immunoexpression was increased (p < 0.05) in the 2 

ml/kg group than in the 1 ml/kg group (Figure 3b). 
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Figure 3: Immunohistochemical demonstration of parvalbumin in the thalamus of rats exposed to either 

  1, or 2 ml/kg of BLCO (A). Bar graphs depict the number of cells positive for parvalbumin (B) 

  and their levels of immunoreactivity (C) in experimental rats. Each column represents mean ± 

  S.E.M. Data were analysed using one-way ANOVA followed by Tukey's post-test. *p < .05, 

  **p < .01. 

3.4 Loss of NeuN-positive cells following BLCO 

exposure.  

Immunohistochemical analysis with one-way 

ANOVA showed significant changes in the number of 

NeuN-positive cells in the thalamus [F (2, 9) = 11.65, 

p = 0.0032] of rats exposed to BLCO. Conversely, the 

immunoreactivity level of NeuN protein showed no 

significant change [F (2, 9) = 2.273, p = 0.1589].  

Post-hoc analysis with Tukey's test showed that at 

doses of either 1 ml/kg (p < 0.05) or 2 ml/kg (p < 0.01), 
BLCO significantly reduced the number of NeuN-

positive cells (Figure 4a). Conversely, there was no 

significant difference in NeuN immunoreactivity 

across the three groups: 0 ml/kg, 1 ml/kg, and 2 ml/kg 

(Figure 4b).  
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Figure 4: Immunohistochemical demonstration of NeuN in the thalamus of rats exposed to either 1 or 2 

  ml/kg of BLCO (A). Bar graphs depict the number of cells positive for NeuN (B) and their 

  levels of immunoreactivity (C) in experimental rats. Each column represents mean ± S.E.M. 

  Data were analysed using one-way ANOVA followed by Tukey's post-test. *p < .05, **p < .01. 

3.5 Lack of Nrf2 activation in the thalamus following 

BLCO exposure.  

One-way ANOVA showed that exposure of rats to 

BLCO showed no significant change in the number of 

Nrf2 positive cells [F (2, 9) = 1.269, p = 0.3269] as 

well as the immunoreactivity levels of Nrf2 protein [F 

(2, 9) = 0.4111, p = 0.1589] when compared with 

control (Figure 5b & 5c). 
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Figure 5: Immunohistochemical demonstration of Nrf2 in the thalamus of rats exposed to either 1, or 2 

  ml/kg of BLCO (A). Bar graphs depict the number of cells positive for Nrf2 (B) and their levels 

  of immunoreactivity (C) in experimental rats. Each column represents mean ± S.E.M. Data were 

  analysed using one-way ANOVA followed by Tukey's post-test. 

Discussion 

Organ toxicity following crude oil exposure is well-

established 3, 4, particularly in the nervous system 1, 30, 

31. Crude oil contributes massively to Nigeria's 

revenue. As such, at least for the foreseeable future, 
there is a certainty for continuous economic 

exploitation of crude oil as well as its increased 

environmental exposure 2. Deliberate and aprioristic 

usage of BLCO in medicinal practices by locals also 

contributes to the increased occurrence of BCLO 

exposure 3. The thalamus is a critical relay station for 

all sensory information except olfaction and is for 

important processes such as learning and memory 13, 

decision-making 14, and motor execution 16. Thus, in 

this study, we evaluated the neurotoxic impact of 

BLCO, a special blend of crude oil majorly produced 
in southern Nigeria, in the thalamus. 

Inflammation is a key cellular response to biological 

and chemical toxins. Glia-mediated inflammation is 

specific to the brain and is the local immune response 

that deals with a threat to the neuronal 

microenvironment 32. In this study, there is a 

decreased number of recruited microglia after BLCO 

exposure, which was particularly significant at 2 

ml/kg. There is no significant difference in the number 

and activation levels of microglial cells in 1 ml/kg- 

compared to 2 ml/kg-exposed thalamus.  Typically, 

the local density of microglia rises in response to toxic 

invasions 19, which is contrary to the observations in 
this study. It is plausible that BLCO could have caused 

microglia toxicity and triggered their death, possibly 

via apoptosis 33. Also, this study reported increased 

astrocytic activity, particularly following 1 ml/kg 

BLCO exposure. The activation levels, but not the 

number of astrocytes were significantly reduced in 2 

ml/kg- compared to 1 ml/kg-exposed thalamus.  This 

finding of astrocytic activation following BLCO is 

consistent with other cases of neurotoxicity 34-36. 

Another interesting observation of the glia activation 

pattern in this study is the increased astrocytic activity 
in the thalamus at low BLCO exposure in comparison 

to reduced microglia cell number at the same dose. It 

is not particularly clear why these contrasting 

responses; however, Ni, Li 37 provided evidence that 
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microglial cells are more vulnerable to MeHg toxicity 

than astrocytes, which could account for the observed 

microglia but not astrocyte loss. Notwithstanding, all 

these observations are evidence of glia activity 

following BLCO neurotoxicity in the thalamus and 
suggest further understanding of differential glia 

dynamics in cases of crude oil neurotoxicity. 

Oxidative response to BLCO neurotoxicity in the 

thalamus was explored via the quantification of the 
Nrf2 protein. It is well established that ROS produced 

during oxidative stress disrupts the sequestration of 

Nrf2 by Keap1, leading to the nuclear translocation of 

Nrf2. In the nucleus, Nrf2 binds to the antioxidant 

response element in the promoters of its target 

antioxidant genes to increase their production 38. In 

this study, there is no significant change in levels of 

the Nrf2 protein as well as the number of Nrf2-

positive cells. It is characteristic for Nrf2 levels to 

increase to protect cells from oxidant injuries 39-41. 

Therefore, it is surprising that we found no significant 
change in Nrf2-expressing cells and levels. We 

speculate that BLCO elicitation of oxidative stress is 

unable to impart activation of the Nrf2 antioxidant 

system. Evidence from several works supports 

oxidative stress as a cellular response mechanism to 

BLCO 3, 31, 42, 43. Thus, we suggest that the lack of 

change to Nrf2 in our study might involve the 

inhibition of keap-1/Nrf2 dissociation, which is key to 

the nuclear translocation of Nrf2 to activate 

antioxidant genes 38 Since we failed to find any study 

that evaluates BLCO neurotoxicity with keap-1 

activity, this hypothesis is untested and warrants 
further investigation.  

Parvalbumin (PV) interneurons are GABAergic 

(PVGs) cells that play an essential role in maintaining 

a fine-tuned excitation-inhibition balance in the brain 
44, 45. Given the inhibitory role of PVGs, any aberration 

in their function results in the dysregulation of 

excitatory-inhibitory balance and subsequently 

neurologic disorders such as epilepsy and 

schizophrenia 46-49. In this study, there was a dose-

dependent significant increase in the number of PV-

positive cells and their expression levels after BLCO 

exposure, which indicates increased inhibitory 

activity in the thalamus. It is unclear why this increase 

occurred as we anticipated the potential loss of PV 

cells and subsequent PV expression as seen in cases of 
neurotoxicity 50, 51. Nonetheless, we suggest that the 

over-inhibitory activity in the thalamus may be a 

compensatory response to increased excitatory 

influences from other neocortical regions, with which 

the thalamus forms neural circuits 11. These 

neocortical regions are packed with numerous 

glutamatergic neurons 52 implicated in brain 

excitotoxicity 53, 54.  

Finally, this study explored neuronal loss in the 

thalamus via the quantification of the NeuN protein. 

NeuN is a marker for mature neurons and has been 

used to directly evaluate neuronal loss 22, 23. Therefore, 

the reduction in the density of NeuN-expressing cells 

suggests an actual loss of neuronal density in the 

thalamus following BLCO exposure, as demonstrated 
in other neurotoxicity and neurological studies 55-57.  

In summary, the study clearly showed evidence of 

significant glia activity, no evidence for the activation 

of the Nrf2 antioxidant system, a surprising over-
inhibitory mechanism in the thalamus, and a 

significant reduction in thalamic neuronal density in 

BLCO-exposed rats. Importantly, the findings 

reported here pose a few questions about (i) the nature 

of microglia loss caused by BLCO; (ii) the interaction 

of BLCO with the Nrf2/keap1 antioxidant system; and 

(iii) the unexpected over-inhibitory activity of 

GABAergic interneurons in the thalamus following 

BLCO exposure. It is worth stating that the present 

study was limited to the use of immunohistochemical 

techniques to evaluate expression of the selected 
neuromarkers. Other methods of evaluating the 

expressions of these markers including western 

blotting, chromatin immunoprecipitation, may shed 

provide further information. Hence, further studies are 

needed to proffer insights into these outlined queries. 
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